

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			9701/36
Advanced Prac	tical Skills	Oc	tober/November 2010
			2 hours
Candidates ans	swer on the Question Paper.		
Additional Mate	erials: As listed in the Instr	ructions to Supervisors	
READ THESE	INSTRUCTIONS FIRST		
Give details of t Write in dark bl		r and name on all the work you hand in. ratory where appropriate, in the boxes pro	ovided.

You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units. Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 11 and 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session		
Laboratory		

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 12 printed pages.

[Turn over

DC (LEO) 28255/3

© UCLES 2010

2

For Examiner's Use

1 **FB 1** is $0.125 \text{ mol dm}^{-3}$ sulfuric acid, H_2SO_4 . **FB 2** is an aqueous solution of sodium hydroxide, NaOH.

You are to determine the concentration, in mol dm^{-3} , of the sodium hydroxide in **FB 2**.

(a) Method

- Fill a burette with **FB 1**.
- Run between 45.50 cm³ and 46.50 cm³ of **FB 1** from the burette into the 250 cm³ graduated (volumetric) flask, labelled **FB 3**.
- Make up to the mark with distilled water.
- Shake the flask to mix the solution.

In the space below record your burette readings and the volume of **FB 1** added to the graduated flask.

You are reminded to shake Flask A and Flask B periodically.

Titration

- Fill a second burette with **FB 2**.
- Pipette 25.0 cm³ of **FB 3**, the diluted acid, into a conical flask.
- Add to the flask a few drops of phenolphthalein indicator.
- Place the flask on a white tile.
- Titrate the acid in the flask with **FB 2**.
- At the end-point a "permanent" pink colour will remain in the solution.
- **Note**: The "permanent" pink colour will fade over several minutes as carbon dioxide is absorbed from the atmosphere.

You should perform a **rough titration**.

In the space below record your burette readings for this rough titration.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results
- Record in a suitable form on page 3 all of your burette readings and the volume of FB 2 added in each accurate titration.
- Make certain any recorded results show the precision of your practical work.

You will require the burette containing FB 2 for Question 2.

© UCLES 2010

For

[7]

(b) From your accurate titration results obtain a suitable value to be used in your calculation. Show clearly how you have obtained this value.

3

25.0 cm³ of **FB 3** required cm³ of **FB 2**. [1]

Calculations

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(c) (i) Calculate how many moles of H_2SO_4 in **FB 1** were run from the burette into the 250 cm³ graduated, (volumetric) flask.

..... mol of H_2SO_4 were run from the burette into the graduated flask.

(ii) Calculate how many moles of H_2SO_4 in **FB 3** were pipetted from the graduated flask into the conical flask in each titration.

..... mol of $\mathrm{H_2SO_4}$ were pipetted into the conical flask.

(iii) Calculate how many moles of NaOH reacted with the H_2SO_4 in (ii).

$$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$$

The $\rm H_2SO_4$ in the titration flask reacted with mol of NaOH.

	(iv)	Calculate the concentration, in moldm ^{-3} , of NaOH in FB 2 .	For Examiner's Use
		The concentration of NaOH in FB 2 is mol dm ^{-3} . [5]	
(d)		individual error in any burette reading is $\pm 0.05 \text{cm}^3$. students, A and B, record identical burette readings.	
		final burette reading25.60 cm ³ initial burette reading1.35 cm ³ volume added24.25 cm ³	
	Exp	lain the following.	
	(i)	The initial burette reading made by student A was 0.05cm^3 greater than the true value but the volume added was exactly 24.25cm^3 .	
	(ii)	The initial burette reading made by student B was 0.05cm^3 less than the true value and the actual volume added was exactly 24.15 cm^3 .	
		[2]	
(e)	the	ne instructions for the experiment you were told that the "permanent" pink colour at end-point would fade over a few minutes as carbon dioxide is absorbed from the osphere.	
	(i)	Explain why absorption of carbon dioxide at the end-point would reverse the indicator colour change seen in the titration.	
	(ii)	Suggest a modification to the titration method, using the same indicator, that would overcome this problem.	
		[2]	
		[Total: 17]	

4

2 FB 4 is $0.050 \text{ mol dm}^{-3}$ sodium hydroxide solution.

FB 5 is $0.200 \text{ mol dm}^{-3}$ propanoic acid, $C_2H_5CO_2H$. **FB 6** is an organic liquid that does not mix with water.

Propanoic acid dissolves both in water and in the organic layer, **FB 6**.

When an aqueous solution of the acid is shaken with **FB 6**, some of the acid transfers to the organic layer.

5

The amount of acid remaining in the aqueous layer can be determined by titration with aqueous sodium hydroxide.

Preparation of the mixture in Flask A and in Flask B.

Flask A

- Use a measuring cylinder to place 50 cm³ of **FB 5** into the stoppered flask labelled **Flask A**.
- Use a second measuring cylinder to add to the flask 40 cm³ of **FB 6**, the organic liquid.
- Replace the stopper in the flask.

Flask B

- Use the first measuring cylinder to place 50 cm³ of **FB 5** into the stoppered flask labelled **Flask B**.
- Use the second measuring cylinder to add to the flask 60 cm³ of **FB 6**, the organic liquid.
- Replace the stopper in the flask.
- Shake both flasks vigorously for about 1 minute.
- Leave the flasks on the workbench and start Question 1.
- Shake the flasks for a further minute at intervals during the course of your work on another question.

(a) Titrations

For each flask follow the same procedure.

- Empty the burette containing **FB 2**.
- Rinse the burette thoroughly with **FB 4**.
- Fill the burette with **FB 4**.
- Ensure the two layers have separated this should take no longer than 1 minute after shaking the flask.
- Pipette 10.0 cm³ of the <u>lower</u> (aqueous) layer into a conical flask. Attach the pipette filler to the pipette before inserting it into the mixture, in order to close the top of the pipette to prevent any of the top (organic) layer from entering the pipette.
- Replace the stopper in the flask.
- Titrate the acid in the conical flask with **FB 4**, using phenolphthalein indicator, as in Question 1.
- One titration will be sufficient for each experiment but take care to ensure that no errors are made during the procedure.

Results

Record, in a single table below, the burette readings and volume of **FB 4** added, for each of **Flask A** and **Flask B**.

For Examiner's Use

[4]

(b) Calculations

In these calculations make use of the following.

- The concentration of NaOH in **FB 4** is 0.050 mol dm⁻³.
- 50 cm^3 of 0.200 mol dm⁻³ propanoic acid, the volume of acid added to each flask, contains 0.010 mol C₂H₅CO₂H.
- 1 mol $C_2H_5CO_2H$ reacts with 1 mol NaOH.
- (i) Calculate the volume of FB 4 that contains 0.010 mol NaOH. This is the volume of FB 4 that would have reacted with the propanoic acid in the 50 cm³ of the aqueous layer, before shaking with the organic liquid.

Volume of **FB 4** = \dots cm³

(ii) For each flask, use your titration result in (a) to calculate the volume of FB 4 needed to react with the acid remaining in 50 cm³ of the aqueous layer, after shaking with the organic liquid.

Flask A	Flask B
volume of FB 4 = cm^3	volume of FB 4 = cm^3

(iii) The amount of propanoic acid transferred to the organic layer can be represented by the following.

(answer to (i) – answer to (ii))

For each flask evaluate this expression.

Flask A	(answer to (i) – answer to (ii)) = cm^3
Flask B	(answer to (i) – answer to (ii)) =

(c) In which flask was most propanoic acid transferred to the organic layer?

Justify your answer.

[1]

(d) It is suggested that shaking the mixture leads to the following equilibrium being established.

 $C_2H_5CO_2H(aq) \rightleftharpoons C_2H_5CO_2H(org)$

Determine the equilibrium constant by evaluating the expressions in the following table.

(i) Determine the equilibrium constant by evaluating the expressions in the following table. **Ignore units**.

Flask A	Flask B
K _c = <u>answer (b)(iii)</u> × 1.25 answer (b)(ii)	$K_{c} = \frac{\text{answer (b)(iii)}}{\text{answer (b)(ii)}} \times 0.83$
K _c =	<i>K</i> _c =

(ii) Explain whether or not your results support the idea that equilibrium has been established in each flask.

[1]

[Total: 8]

For Examiner's Use **3 FB 7**, **FB 8** and **FB 9** are aqueous solutions, each containing cations and anions from those listed on pages 11 and 12 in the Qualitative Analysis Notes.

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations. **No additional tests for ions present should be attempted**.

If any solution is warmed, a boiling-tube MUST be used.

Rinse and reuse test-tubes and boiling-tubes where possible.

(a) (i) One or more of the solutions **FB 7**, **FB 8** and **FB 9** are believed to contain the ammonium ion, NH₄⁺.

Suggest a reagent that would enable you to identify the presence of NH_4^+ and describe how you would use the reagent in an appropriate test.

reagent

.....


Use this reagent to test each of the solutions. Record your observations in the table below.

solution	observation
FB 7	
FB 8	
FB 9	

9701/36/O/N/10

I II

For Examiner's Use (ii) One or more of the solutions contains the sulfate ion, SO_4^{2-} . Select reagents that would enable you to identify the presence of SO_4^{2-} . Show clearly, by describing how the reagents will be used, how you would distinguish SO_4^{2-} from the sulfite ion, SO_3^{2-} .

Use these reagents to test each of the solutions. Record your observations in the table below.

test

solution	observation
FB 7	
FB 8	
FB 9	

III	
IV	
V	

(iii) Conclusions

The ammonium ion, NH_4^+ , is present in	
The sulfate ion, SO_4^{2-} , is present in	

(b) Use aqueous sodium hydroxide and aqueous ammonia in separate tests to identify any cation (apart from NH₄⁺) present in **FB 7**, **FB 8** and **FB 9**.

Present your results for each of the solutions in a suitable form below.

L		
	Ι	
	II	
	III	
	IV	

[4]

(c) Conclusion

Complete the following table. Place a cross in any box where no cation has been identified.

FB 7 FB 8 FB 9	solution	cation	supporting evidence
	FB 7		
FB 9	FB 8		
	FB 9		

[1]

(d) Carry out the following tests on **FB 10**. Observe carefully at each stage and record all of your observations in the table.

test		observations
(i)	Place 2 spatula measures of FB 10 in a dry, hard glass boiling-tube. Heat the solid gently at first, then strongly until no further change is seen. Retain the solid for use in (ii) .	
(ii)	Tip the contents of the tube in (i) into a second boiling-tube. Add 2 cm depth of dilute hydrochloric acid a little at a time . Warm the tube and leave to stand.	

[5]

Ι

Π

III

IV

V

[Total: 15]

For

Use

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

_	reaction with		
ion	NaOH(aq)	NH ₃ (aq)	
aluminium, A <i>l</i> ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on heating		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess	
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess	
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess	

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ^{2−} (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$); gives white ppt. with Pb ²⁺ (aq)
iodide, I⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble In NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO ₂ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil, NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with $Ba^{2+}(aq)$ or with $Pb^{2+}(aq)$ (insoluble in excess dilute strong acid)
sulfite, SO ₃ ^{2–} (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint
sulfur dioxide, SO ₂	turns acidified aqueous potassium dichromate(VI) from orange to green

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

© UCLES 2010

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.